The TWD1643GE is a powerful, reliable and economical Generating Set Diesel Engine built on the dependable in-line six design.

Durability & low noise
Designed for easiest, fastest and most economical installation. Well-balanced to produce smooth and vibration-free operation with low noise level.
To maintain a controlled working temperature in cylinders and combustion chambers, the engine is equipped with piston cooling. The engine is also fitted with replaceable cylinder liners and valve seats/guides to ensure maximum durability and service life of the engine.

Low exhaust emission
The state of the art, high-tech injection and charging system with low internal losses contributes to excellent combustion and low fuel consumption.
The TWD1643GE is certified for EPA Tier 2. An additional feature is that TWD1643GE fulfils EU Stage 2 exhaust emission levels.

Easy service & maintenance
Easily accessible service and maintenance points contribute to the ease of service of the engine.

Technical description

Engine and block
- Optimized cast iron cylinder block with optimum distribution of forces without the block being unnessarily heavy.
- Wet, replaceable cylinder liners
- Piston cooling for low piston temperature and reduced ring temperature
- Tapered connecting rods for reduce risk of piston cracking
- Crankshaft induction hardened bearing surfaces and fillets with seven bearings for moderate load on main and high-end bearings
- Case hardened and Nitrocarburized transmission gears for heavy duty operation
- Keystone top compression rings for long service life
- Viscous type crankshaft vibration dampers to withstand single bearing alternator torsional vibrations
- Replaceable valve guides and valve seats
- Over head camshaft and four valves per cylinder

Lubrication system
- Full flow oil cooler
- Full flow disposable spin-on oil filter, for extra high filtration
- The lubricating oil level can be measured during operation
- Gear type lubricating oil pump, gear driven by the transmission

Fuel system
- Non-return fuel valve
- Electronic unit injectors
- Fuel prefilter with water separator and water-in-fuel indicator / alarm
- Gear driven low-pressure fuel pump
- Fine fuel filter with manual feed pump and fuel pressure switch
- Fuel shut-off valve

Cooling system
- TWD-cooling system with optimized priority and cold start valves
- Two water cooled charge air coolers
- Efficient cooling with accurate coolant control through a water distribution duct in the cylinder block. Reliable sleeve thermostat with minimum pressure drop
- Belt driven, maintenance-free coolant pump with high degree of efficiency

Turbo charger
- Efficient and reliable dual stage turbo chargers
- Intermediate charge air coolers for both turbo chargers
- Waste gate system for the high pressure turbo charger

Electrical system
- Engine Management System 2 (EMS 2), an electronically controlled processing system which optimizes engine performance. It also includes advanced facilities for diagnostics and fault tracing
- The instruments and controls connect to the engine via the CAN SAE J1939 interface, either through the Control Interface Unit (CIU) or the Display Control Unit (DCU). The CIU converts the digital CAN bus signal to an analog signal, making it possible to connect a variety of instruments. The DCU is a control panel with display, engine control, monitoring, alarm, parameter setting and diagnostic functions. The DCU also presents error codes in clear text.
- Sensors for oil pressure, oil temp, boost pressure, boost temp, exhaust temp, coolant temp, fuel temp, water in fuel, fuel pressure and two speed sensors.
Technical Data

Engine designation……………………………………………………………. TWD1643GE
No. of cylinders and configuration……………………………………… in-line 6
Method of operation………………………………………………………….. 4-stroke
Bore, mm (in.)…………………………………………………………………… 144 (5.67)
Stroke, mm (in.)………………………………………………………………… 165 (6.50)
Displacement, l (in³)…………………………………………………………… 16.12 (983.7)
Compression ratio…………………………………………………………… 16.5:1
Dry weight, kg (lb)…………………………………………………………….. 1970 (4348)
Dry weight with Gen Pac, kg (lb)……………………………………………… 2000 (4410)
Wet weight, kg (lb)…………………………………………………………….. 2130 (4680)
Wet weight with Gen Pac, kg (lb)……………………………………………… 2200 (4860)

Performance 1500 rpm 1800 rpm
with fan, kW (hp) at:
Prime Power 536 (729) 585 (796)
Max Standby Power 596 (811) 644 (876)

Lubrication system 1500 rpm 1800 rpm
Oil consumption, liter/h (US gal/h) at:
Prime Power 0.10 (0.026) 0.10 (0.026)
Max Standby Power 0.11 (0.029) 0.11 (0.039)
Oil system capacity incl filters, liter………………………………………………… 48

Fuel system 1500 rpm 1800 rpm
Specific fuel consumption at:
Prime Power, g/kWh (lb/hph)……………….. 215 (0.349) 224 (0.363)
25 % 196 (0.318) 201 (0.326)
50 % 196 (0.318) 197 (0.319)
75 % 196 (0.318) 202 (0.327)
100 % 196 (0.318) 202 (0.327)
Max Standby Power, g/kWh (lb/hph)……………….. 210 (0.340) 220 (0.357)
25 % 195 (0.316) 200 (0.324)
50 % 195 (0.316) 198 (0.321)
75 % 196 (0.318) 200 (0.331)
100 % 200 (0.324) 204 (0.331)

Intake and exhaust system 1500 rpm 1800 rpm
Air consumption, m³/min (cfm) at:
Prime Power 44 (1541) 53 (1874)
Max Standby Power 47 (1658) 55 (1937)
Max allowable air intake restriction, kPa (PSI)………………….. 5 (0.7) 5 (0.7)
Heat rejection to exhaust, kW (BTU/min) at:
Prime Power 415 (23601) 472 (26842)
Max Standby Power 463 (26330) 530 (30141)
Exhaust gas temperature after low pressure turbine, °C (°F) at:
Prime Power 450 (842) 422 (792)
Max Standby Power 463 (865) 461 (862)
Max allowable back-pressure in exhaust line, kPa (PSI)………………….. 10 (1.5) 10 (1.5)
Exhaust gas flow, m³/min (cfm) at:
Prime power 101.6 (3958) 119 (4201)
Max Standby Power 111.8 (3949) 130.1 (4593)

Standard equipment

- Automatic belt tensioner
- Lift eyelets
- Flywheel housing with conn. acc. to SAE 1
- Flywheel for 14" flex. plate and flexible coupling
- Vibration dampers
- Engine suspension
- Fuel system
- Electronic control system
- Pre-filter with water separator
- Intake and exhaust system
- Air filter without rain cover
- Air restriction indicator
- Air cooled exhaust manifold
- Connecting flange for exhaust pipe
- Exhaust flange with v-clamp
- Turbo chargers, dual stage, right side
- Cooling system
- TWD-cooling system
- Belt driven driven coolant pump
- Fan hub
- Pusher fan
- Fan guard
- Belt guard
- Control system
- Engine Management System (EMS) with CAN-bus interface SAE J1939
- CIU, Control Interface Unit
- DCU, Display Control Unit
- Alternator
- Alternator 80A / 24 V
- Starting system
- Starter motor, 7.0 kW, 24 V
- Instruments and senders
- Temp. and pressure for automatic stop/alarm
- Other equipment
- Expandable base frame
- Engine Packing
- Plastic wrapping

- optional equipment or not applicable
- * included in standard specification

Dimensions TWD1643GE

Not for installation

A* = 1925 mm / 76 in
B* = 1350 mm / 53.1 in (max width 1401 mm / 55.2 in)
C = 2362 mm / 93 in
D = 2399 mm / 94.5 in (During transport)
D = Max 3255 mm / 128.2 in

Power Standards

The engine performance corresponds to ISO 3046, BS 5514 and DIN 6271. The technical data applies to an engine without cooling fan and operating on a fuel with calorific value of 42.7 M J/kg (118360 BTU/lb) and a density of 0.84 kg/litre (7.01 lb/US gal), also where this involves a deviation from the standards. Power output guaranteed within 0 to +2% at rated ambient conditions at delivery. Ratings are based on ISO 8528.

Engine speed governing in accordance with ISO 3046/IV, class A1 and ISO 8528-5 class G3

Exhaust emissions

The TWD1643GE is certified for EPA Tier 2. An additional feature is that TWD1643GE fulfills EU Stage 2 exhaust emission levels.

Rating Guidelines

PRIME POWER rating corresponds to ISO Standard Power for continuous operation. It is applicable for supplying electrical power at variable load for an unlimited number of hours instead of commercial purchased power. A10 % overload capability for governing purposes is available for this rating. MAXIMUM STANDBY POWER rating corresponds to ISO Standard Fuel Stop Power. It is applicable for supplying standby electrical power at variable load in areas with well established electrical networks in the event of normal utility power failure. No overload capability is available for this rating.

1 hp = 1 kW x 1.36

Information

For more technical data and information, please look in the Generating Set Engages Sales Guide.